Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1235, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871047

RESUMO

Fibroblast growth factor-18 (FGF18) has diverse organ development and damage repair roles. However, its role in cardiac homeostasis following hypertrophic stimulation remains unknown. Here we investigate the regulation and function of the FGF18 in pressure overload (PO)-induced pathological cardiac hypertrophy. FGF18 heterozygous (Fgf18+/-) and inducible cardiomyocyte-specific FGF18 knockout (Fgf18-CKO) male mice exposed to transverse aortic constriction (TAC) demonstrate exacerbated pathological cardiac hypertrophy with increased oxidative stress, cardiomyocyte death, fibrosis, and dysfunction. In contrast, cardiac-specific overexpression of FGF18 alleviates hypertrophy, decreased oxidative stress, attenuates cardiomyocyte apoptosis, and ameliorates fibrosis and cardiac function. Tyrosine-protein kinase FYN (FYN), the downstream factor of FGF18, was identified by bioinformatics analysis, LC-MS/MS and experiment validation. Mechanistic studies indicate that FGF18/FGFR3 promote FYN activity and expression and negatively regulate NADPH oxidase 4 (NOX4), thereby inhibiting reactive oxygen species (ROS) generation and alleviating pathological cardiac hypertrophy. This study uncovered the previously unknown cardioprotective effect of FGF18 mediated by the maintenance of redox homeostasis through the FYN/NOX4 signaling axis in male mice, suggesting a promising therapeutic target for the treatment of cardiac hypertrophy.


Assuntos
Fatores de Crescimento de Fibroblastos , Espectrometria de Massas em Tandem , Masculino , Animais , Camundongos , Cromatografia Líquida , Camundongos Knockout , Miócitos Cardíacos , Cardiomegalia
2.
Mol Biol Rep ; 50(4): 3469-3478, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36765018

RESUMO

BACKGROUND: Metformin, a first-line oral anti-diabetic drug, has recently been reported to exert protective effect on various cardiovascular diseases. However, the potential role of metformin in ethanol-induced cardiomyocyte injury is still unknown. Therefore, this study was aimed to investigate the effect of metformin on ethanol-induced cardiomyocyte injury and its underlying mechanism. METHODS AND RESULTS: H9c2 cardiomyocytes were exposed to ethanol for 24 h to establish an ethanol-induced cardiomyocyte injury model, and followed by treatment with metformin in the presence or absence of Lapatinib (an ErbB2 inhibition). CCK8 and LDH assays demonstrated that metformin improved cell viability in cardiomyocytes exposed to ethanol. Furthermore, metformin suppressed cardiomyocyte apoptosis and reduced the expressions of apoptosis-related proteins (Bax and C-CAS-3). In addition, our results showed that metformin activated the AKT/Nrf2 pathway, and then promoted Nrf2 nuclear translocation and the transcription of its downstream antioxidant genes (HO-1, CAT and SOD2), thereby inhibiting oxidative stress. Interestingly, we found that ErbB2 protein expression was significantly inhibited in ethanol-treated cardiomyocytes, which was markedly reversed by metformin. In contrast, Lapatinib largely abrogated the activation of AKT/Nrf2 signaling by metformin, accompanied by the increases in oxidative stress and cardiomyocyte apoptosis, indicating that metformin prevented ethanol-induced cardiomyocyte injury in an ErbB2-dependent manner. CONCLUSION: In summary, our study provides the first evidence that metformin protects cardiomyocyte against ethanol-induced oxidative stress and apoptosis by activating ErbB2-mediated AKT/Nrf2 signaling. Thus, metformin may be a potential novel treatment approach for alcoholic cardiomyopathy.


Assuntos
Metformina , Miócitos Cardíacos , Apoptose , Linhagem Celular , Etanol/farmacologia , Lapatinib/farmacologia , Metformina/farmacologia , Metformina/metabolismo , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo
3.
Redox Biol ; 56: 102468, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36113339

RESUMO

Acute myocardial infarction (MI) triggers oxidative stress, which worsen cardiac function, eventually leads to remodeling and heart failure. Unfortunately, effective therapeutic approaches are lacking. Fibroblast growth factor 7 (FGF7) is proved with respect to its proliferative effects and high expression level during embryonic heart development. However, the regulatory role of FGF7 in cardiovascular disease, especially MI, remains unclear. FGF7 expression was significantly decreased in a mouse model at 7 days after MI. Further experiments suggested that FGF7 alleviated MI-induced cell apoptosis and improved cardiac function. Mechanistic studies revealed that FGF7 attenuated MI by inhibiting oxidative stress. Overexpression of FGF7 actives nuclear factor erythroid 2-related factor 2 (Nrf2) and scavenging of reactive oxygen species (ROS), and thereby improved oxidative stress, mainly controlled by the phosphatidylinositol-3-kinase α (PI3Kα)/AKT signaling pathway. The effects of FGF7 were partly abrogated in Nrf2 deficiency mice. In addition, overexpression of FGF7 promoted hexokinase2 (HXK2) and mitochondrial membrane translocation and suppressed mitochondrial superoxide production to decrease oxidative stress. The role of HXK2 in FGF7-mediated improvement of mitochondrial superoxide production and protection against MI was verified using a HXK2 inhibitor (3-BrPA) and a HXKII VDAC binding domain (HXK2VBD) peptide, which competitively inhibits localization of HXK2 on mitochondria. Furthermore, inhibition of PI3Kα/AKT signaling abolished regulation of Nrf2 and HXK2 by FGF7 upon MI. Together, these results indicate that the cardio protection of FGF7 under MI injury is mostly attributable to its role in maintaining redox homeostasis via Nrf2 and HXK2, which is mediated by PI3Kα/AKT signaling.


Assuntos
Infarto do Miocárdio , Fator 2 Relacionado a NF-E2 , Animais , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/farmacologia , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos
4.
J Invest Dermatol ; 142(12): 3175-3183.e5, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35853487

RESUMO

Systemic sclerosis is a complex process of pathogenesis, and the contributions of inherited genes, infections, and chemicals remain largely unknown. In this study, we showed that p90 ribosomal S6 protein kinase 2 (RSK2) was selectively upregulated in fibrotic skin and fibroblasts treated with the profibrotic cytokine TGF-ß. Moreover, knockout of Rsk2 specifically in skin fibroblasts or pharmacological inhibition of RSK2 attenuated skin fibrosis in a mouse model. Mechanistically, RSK2 directly interacted with glycogen synthase kinase 3ß in vivo and in vitro and thereby induced phosphorylation of glycogen synthase kinase 3ß at Ser9 to inhibit ubiquitination and degradation of GLI1, which promoted fibroblast differentiation and skin fibrosis. Consequently, RSK2 plays an important role in the dermal skin of systemic sclerosis. These findings provided a potential therapeutic target for systemic sclerosis.


Assuntos
Proteínas Quinases S6 Ribossômicas 90-kDa , Escleroderma Sistêmico , Animais , Camundongos , Fibroblastos/metabolismo , Fibrose , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo
5.
Cell Death Dis ; 13(3): 276, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35351862

RESUMO

Cardiac hypertrophy occurs initially in response to an increased cardiac load as a compensatory mechanism to maintain cardiac output. However, sustained pathological hypertrophy can develop into heart failure and cause sudden death. Fibroblast growth factor 20 (FGF20) is a member of the fibroblast growth factor family, which involved in apoptosis, aging, inflammation, and autophagy. The precise function of FGF20 in pathological cardiac hypertrophy is unclear. In this study, we demonstrated that FGF20 was significantly decreased in response to hypertrophic stimulation. In contrast, overexpression of FGF20 protected against pressure overload-induced cardiac hypertrophy. Mechanistically, we found that FGF20 upregulates SIRT1 expression, causing deacetylation of FOXO1; this effect promotes the transcription of downstream antioxidant genes, thus inhibits oxidative stress. In content, the anti-hypertrophic effect of FGF20 was largely counteracted in SIRT1-knockout mice, accompanied by an increase in oxidative stress. In summary, our findings reveal a previously unknown protective effect of FGF20 on pathological cardiac hypertrophy by reducing oxidative stress through activation of the SIRT1 signaling pathway. FGF20 is a potential novel molecular target for preventing and treating pressure overload-induced myocardial injury.


Assuntos
Cardiomegalia , Sirtuína 1 , Animais , Cardiomegalia/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...